Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22
1.
Epilepsia ; 65(4): 1072-1091, 2024 Apr.
Article En | MEDLINE | ID: mdl-38411286

OBJECTIVE: The intricate neuroanatomical structure of the cerebellum is of longstanding interest in epilepsy, but has been poorly characterized within the current corticocentric models of this disease. We quantified cross-sectional regional cerebellar lobule volumes using structural magnetic resonance imaging in 1602 adults with epilepsy and 1022 healthy controls across 22 sites from the global ENIGMA-Epilepsy working group. METHODS: A state-of-the-art deep learning-based approach was employed that parcellates the cerebellum into 28 neuroanatomical subregions. Linear mixed models compared total and regional cerebellar volume in (1) all epilepsies, (2) temporal lobe epilepsy with hippocampal sclerosis (TLE-HS), (3) nonlesional temporal lobe epilepsy, (4) genetic generalized epilepsy, and (5) extratemporal focal epilepsy (ETLE). Relationships were examined for cerebellar volume versus age at seizure onset, duration of epilepsy, phenytoin treatment, and cerebral cortical thickness. RESULTS: Across all epilepsies, reduced total cerebellar volume was observed (d = .42). Maximum volume loss was observed in the corpus medullare (dmax = .49) and posterior lobe gray matter regions, including bilateral lobules VIIB (dmax = .47), crus I/II (dmax = .39), VIIIA (dmax = .45), and VIIIB (dmax = .40). Earlier age at seizure onset ( η ρ max 2 = .05) and longer epilepsy duration ( η ρ max 2 = .06) correlated with reduced volume in these regions. Findings were most pronounced in TLE-HS and ETLE, with distinct neuroanatomical profiles observed in the posterior lobe. Phenytoin treatment was associated with reduced posterior lobe volume. Cerebellum volume correlated with cerebral cortical thinning more strongly in the epilepsy cohort than in controls. SIGNIFICANCE: We provide robust evidence of deep cerebellar and posterior lobe subregional gray matter volume loss in patients with chronic epilepsy. Volume loss was maximal for posterior subregions implicated in nonmotor functions, relative to motor regions of both the anterior and posterior lobe. Associations between cerebral and cerebellar changes, and variability of neuroanatomical profiles across epilepsy syndromes argue for more precise incorporation of cerebellar subregional damage into neurobiological models of epilepsy.


Epilepsy, Temporal Lobe , Epileptic Syndromes , Adult , Humans , Epilepsy, Temporal Lobe/complications , Phenytoin , Cross-Sectional Studies , Epileptic Syndromes/complications , Cerebellum/diagnostic imaging , Cerebellum/pathology , Seizures/complications , Magnetic Resonance Imaging/methods , Atrophy/pathology
2.
Mov Disord ; 38(12): 2269-2281, 2023 Dec.
Article En | MEDLINE | ID: mdl-37964373

BACKGROUND: Increasing evidence points to a pathophysiological role for the cerebellum in Parkinson's disease (PD). However, regional cerebellar changes associated with motor and non-motor functioning remain to be elucidated. OBJECTIVE: To quantify cross-sectional regional cerebellar lobule volumes using three dimensional T1-weighted anatomical brain magnetic resonance imaging from the global ENIGMA-PD working group. METHODS: Cerebellar parcellation was performed using a deep learning-based approach from 2487 people with PD and 1212 age and sex-matched controls across 22 sites. Linear mixed effects models compared total and regional cerebellar volume in people with PD at each Hoehn and Yahr (HY) disease stage, to an age- and sex- matched control group. Associations with motor symptom severity and Montreal Cognitive Assessment scores were investigated. RESULTS: Overall, people with PD had a regionally smaller posterior lobe (dmax = -0.15). HY stage-specific analyses revealed a larger anterior lobule V bilaterally (dmax = 0.28) in people with PD in HY stage 1 compared to controls. In contrast, smaller bilateral lobule VII volume in the posterior lobe was observed in HY stages 3, 4, and 5 (dmax = -0.76), which was incrementally lower with higher disease stage. Within PD, cognitively impaired individuals had lower total cerebellar volume compared to cognitively normal individuals (d = -0.17). CONCLUSIONS: We provide evidence of a dissociation between anterior "motor" lobe and posterior "non-motor" lobe cerebellar regions in PD. Whereas less severe stages of the disease are associated with larger motor lobe regions, more severe stages of the disease are marked by smaller non-motor regions. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Parkinson Disease , Humans , Parkinson Disease/complications , Cross-Sectional Studies , Magnetic Resonance Imaging , Cerebellum , Brain
3.
JAMA Netw Open ; 6(11): e2343410, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37966838

Importance: Traumatic brain injury (TBI) is known to cause widespread neural disruption in the cerebrum. However, less is known about the association of TBI with cerebellar structure and how such changes may alter executive functioning. Objective: To investigate alterations in subregional cerebellum volume and cerebral white matter microstructure after pediatric TBI and examine subsequent changes in executive function. Design, Setting, and Participants: This retrospective cohort study combined 12 data sets (collected between 2006 and 2020) from 9 sites in the Enhancing Neuroimaging Genetics Through Meta-Analysis Consortium Pediatric TBI working group in a mega-analysis of cerebellar structure. Participants with TBI or healthy controls (some with orthopedic injury) were recruited from trauma centers, clinics, and institutional trauma registries, some of which were followed longitudinally over a period of 0.7 to 1.9 years. Healthy controls were recruited from the surrounding community. Data analysis occurred from October to December 2022. Exposure: Accidental mild complicated-severe TBI (msTBI) for those in the TBI group. Some controls received a diagnosis of orthopedic injury. Main Outcomes and Measures: Volume of 18 cerebellar lobules and vermal regions were estimated from 3-dimensional T1-weighted magnetic resonance imaging (MRI) scans. White matter organization in 28 regions of interest was assessed with diffusion tensor MRI. Executive function was measured by parent-reported scores from the Behavior Rating Inventory of Executive Functioning. Results: A total of 598 children and adolescents (mean [SD] age, 14.05 [3.06] years; range, 5.45-19.70 years; 386 male participants [64.5%]; 212 female participants [35.5%]) were included in the study, with 314 participants in the msTBI group, and 284 participants in the non-TBI group (133 healthy individuals and 151 orthopedically injured individuals). Significantly smaller total cerebellum volume (d = -0.37; 95% CI, -0.52 to -0.22; P < .001) and subregional cerebellum volumes (eg, corpus medullare; d = -0.43; 95% CI, -0.58 to -0.28; P < .001) were observed in the msTBI group. These alterations were primarily seen in participants in the chronic phase (ie, >6 months postinjury) of injury (total cerebellar volume, d = -0.55; 95% CI, -0.75 to -0.35; P < .001). Smaller cerebellum volumes were associated with higher scores on the Behavior Rating Inventory of Executive Functioning Global Executive Composite score (ß = -208.9 mm3; 95% CI, -319.0 to -98.0 mm3; P = .008) and Metacognition Index score (ß = -202.5 mm3; 95% CI, -319.0 to -85.0 mm3; P = .02). In a subset of 185 participants with longitudinal data, younger msTBI participants exhibited cerebellum volume reductions (ß = 0.0052 mm3; 95% CI, 0.0013 to 0.0090 mm3; P = .01), and older participants slower growth rates. Poorer white matter organization in the first months postinjury was associated with decreases in cerebellum volume over time (ß=0.52 mm3; 95% CI, 0.19 to 0.84 mm3; P = .005). Conclusions and Relevance: In this cohort study of pediatric msTBI, our results demonstrated robust cerebellar volume alterations associated with pediatric TBI, localized to the posterior lobe. Furthermore, longitudinal cerebellum changes were associated with baseline diffusion tensor MRI metrics, suggesting secondary cerebellar atrophy. These results provide further understanding of secondary injury mechanisms and may point to new opportunities for intervention.


Brain Concussion , Brain Injuries, Traumatic , Adolescent , Humans , Child , Female , Male , Cohort Studies , Retrospective Studies , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Cerebellum/diagnostic imaging , Atrophy
4.
bioRxiv ; 2023 Oct 23.
Article En | MEDLINE | ID: mdl-37961570

Objective: The intricate neuroanatomical structure of the cerebellum is of longstanding interest in epilepsy, but has been poorly characterized within the current cortico-centric models of this disease. We quantified cross-sectional regional cerebellar lobule volumes using structural MRI in 1,602 adults with epilepsy and 1,022 healthy controls across twenty-two sites from the global ENIGMA-Epilepsy working group. Methods: A state-of-the-art deep learning-based approach was employed that parcellates the cerebellum into 28 neuroanatomical subregions. Linear mixed models compared total and regional cerebellar volume in i) all epilepsies; ii) temporal lobe epilepsy with hippocampal sclerosis (TLE-HS); iii) non-lesional temporal lobe epilepsy (TLE-NL); iv) genetic generalised epilepsy; and (v) extra-temporal focal epilepsy (ETLE). Relationships were examined for cerebellar volume versus age at seizure onset, duration of epilepsy, phenytoin treatment, and cerebral cortical thickness. Results: Across all epilepsies, reduced total cerebellar volume was observed (d=0.42). Maximum volume loss was observed in the corpus medullare (dmax=0.49) and posterior lobe grey matter regions, including bilateral lobules VIIB (dmax= 0.47), Crus I/II (dmax= 0.39), VIIIA (dmax=0.45) and VIIIB (dmax=0.40). Earlier age at seizure onset (ηρ2max=0.05) and longer epilepsy duration (ηρ2max=0.06) correlated with reduced volume in these regions. Findings were most pronounced in TLE-HS and ETLE with distinct neuroanatomical profiles observed in the posterior lobe. Phenytoin treatment was associated with reduced posterior lobe volume. Cerebellum volume correlated with cerebral cortical thinning more strongly in the epilepsy cohort than in controls. Significance: We provide robust evidence of deep cerebellar and posterior lobe subregional grey matter volume loss in patients with chronic epilepsy. Volume loss was maximal for posterior subregions implicated in non-motor functions, relative to motor regions of both the anterior and posterior lobe. Associations between cerebral and cerebellar changes, and variability of neuroanatomical profiles across epilepsy syndromes argue for more precise incorporation of cerebellum subregions into neurobiological models of epilepsy.

5.
J Neurol ; 270(5): 2360-2369, 2023 May.
Article En | MEDLINE | ID: mdl-36859626

Friedreich ataxia (FRDA) is a rare, inherited neurodegenerative disease characterised in most cases by progressive and debilitating motor dysfunction. Degeneration of cerebellar white matter pathways have been previously reported, alongside indications of cerebello-cerebral functional alterations. In this work, we examine resting-state functional connectivity changes within cerebello-cerebral circuits, and their associations with disease severity (Scale for the Assessment and Rating of Ataxia [SARA]), psychomotor function (speeded and paced finger tapping), and white matter integrity (diffusion tensor imaging) in 35 adults with FRDA and 45 age and sex-matched controls. Voxel-wise seed-based functional connectivity was assessed for three cerebellar cortical regions (anterior lobe, lobules I-V; superior posterior lobe, lobules VI-VIIB; inferior posterior lobe, lobules VIIIA-IX) and two dentate nucleus seeds (dorsal and ventral). Compared to controls, people with FRDA showed significantly reduced connectivity between the anterior cerebellum and bilateral pre/postcentral gyri, and between the superior posterior cerebellum and left dorsolateral PFC. Greater disease severity correlated with lower connectivity in these circuits. Lower anterior cerebellum-motor cortex functional connectivity also correlated with slower speeded finger tapping and less fractional anisotropy in the superior cerebellar peduncles, internal capsule, and precentral white matter in the FRDA cohort. There were no significant between-group differences in inferior posterior cerebellar or dentate nucleus connectivity. This study indicates that altered cerebello-cerebral functional connectivity is associated with functional status and white matter damage in cerebellar efferent pathways in people with FRDA, particularly in motor circuits.


Friedreich Ataxia , Neurodegenerative Diseases , White Matter , Adult , Humans , Friedreich Ataxia/diagnostic imaging , Friedreich Ataxia/complications , White Matter/diagnostic imaging , Diffusion Tensor Imaging , Neurodegenerative Diseases/complications , Magnetic Resonance Imaging , Cerebellum/diagnostic imaging , Patient Acuity
6.
J Vis Exp ; (180)2022 02 04.
Article En | MEDLINE | ID: mdl-35188124

Multiple lines of research provide compelling evidence for a role of the cerebellum in a wide array of cognitive and affective functions, going far beyond its historical association with motor control. Structural and functional neuroimaging studies have further refined understanding of the functional neuroanatomy of the cerebellum beyond its anatomical divisions, highlighting the need for the examination of individual cerebellar subunits in healthy variability and neurological diseases. This paper presents a standardized pipeline for examining cerebellum grey matter morphometry that combines high-resolution, state-of-the-art approaches for optimized and automated cerebellum parcellation (Automatic Cerebellum Anatomical Parcellation using U-Net Locally Constrained Optimization; ACAPULCO) and voxel-based registration of the cerebellum (Spatially Unbiased Infra-tentorial Template; SUIT) for volumetric quantification. The pipeline has broad applicability to a range of neurological diseases and is fully automated, with manual intervention only required for quality control of the outputs. The pipeline is freely available, with substantial accompanying documentation, and can be run on Mac, Windows, and Linux operating systems. The pipeline is applied in a cohort of individuals with Friedreich ataxia (FRDA), and representative results, as well as recommendations on group-level inferential statistical analyses, are provided. This pipeline could facilitate reliability and reproducibility across the field, ultimately providing a powerful methodological approach for characterizing and tracking cerebellar structural changes in neurological diseases.


Friedreich Ataxia , Gray Matter , Cerebellum/diagnostic imaging , Cerebellum/pathology , Friedreich Ataxia/complications , Friedreich Ataxia/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Humans , Magnetic Resonance Imaging/methods , Reproducibility of Results
7.
Cereb Cortex ; 30(4): 2642-2657, 2020 04 14.
Article En | MEDLINE | ID: mdl-31812998

Limited research has examined functioning within fronto-limbic systems subserving the resistance to emotional interference in adolescence despite evidence indicating that alterations in these systems are implicated in the developmental trajectories of affective disorders. This study examined the functioning of fronto-limbic systems subserving emotional interference in early adolescence and whether positive reinforcement could modulate these systems to promote resistance to emotional distraction. Fifty healthy early adolescents (10-13 years old) completed an emotional delayed working memory (WM) paradigm in which no distractors (fixation crosshair) and emotional distracters (neutral and negative images) were presented with and without positive reinforcement for correct responses. WM accuracy decreased with negative distracters relative to neutral distracters and no distracters, and activation increased in amygdala and prefrontal cortical (PFC) regions (ventrolateral, dorsomedial, ventromedial, and subgenual anterior cingulate) with negative distracters compared with those with no distracters. Reinforcement improved performance and reduced activation in the amygdala, dorsomedial PFC, and ventrolateral PFC. Decreases in amygdala activation to negative distracters due to reinforcement mediated observed decreases in reaction times. These findings demonstrate that healthy adolescents recruit similar fronto-limbic systems subserving emotional interference as adults and that positive reinforcement can modulate fronto-limbic systems to promote resistance to emotional distraction.


Adolescent Behavior/physiology , Brain/physiology , Emotions/physiology , Photic Stimulation/methods , Psychomotor Performance/physiology , Reinforcement, Psychology , Adolescent , Adolescent Behavior/psychology , Brain/diagnostic imaging , Child , Female , Humans , Magnetic Resonance Imaging/trends , Male
8.
Psychoneuroendocrinology ; 102: 281-291, 2019 04.
Article En | MEDLINE | ID: mdl-30639923

Affective neuroscience research suggests that maturational changes in reward circuitry during adolescence present opportunities for new learning, but likely also contribute to increases in vulnerability for psychiatric disorders such as depression and substance abuse. Basic research in animal models and human neuroimaging has made progress in understanding the normal development of reward circuitry in adolescence, yet, few functional neuroimaging studies have examined puberty-related influences on the functioning of this circuitry. The goal of this study was to address this gap by examining the extent to which striatal activation and cortico-striatal functional connectivity to cues predicting upcoming rewards would be positively associated with pubertal status and levels of pubertal hormones (dehydroepiandrosterone, testosterone, estradiol). Participants included 79 adolescents (10-13 year olds; 47 girls) varying in pubertal status who performed a novel reward cue processing task during fMRI. Pubertal maturation was assessed using sex-specific standardized composite measures based on Tanner staging (self-report and clinical assessment) and scores from the Pubertal Development Scale. These composite measures were computed to index overall pubertal maturation as well as maturation of the adrenal and gonadal axes separately for boys and girls. Basal levels of circulating pubertal hormones were measured using immunoassays from three samples collected weekly upon awakening across a three-week period. Results indicated greater striatal activation and functional connectivity between nucleus accumbens (NAcc) and medial prefrontal cortex (mPFC) to reward cue (vs. no reward cue) on this task. Also, girls with higher levels of estradiol showed reduced activation in left and right caudate and greater NAcc-putamen connectivity. Girls with higher levels of testosterone showed greater NAcc connectivity with the anterior cingulate cortex and the insula. There were no significant associations in boys. Findings suggest that patterns of activation and connectivity in cortico-striatal regions are associated with reward cue processing, particularly in girls. Longitudinal follow-up neuroimaging studies are needed to fully characterize puberty-specific effects on the development of these neural regions and how such changes may contribute to pathways of risk or resilience in adolescence.


Puberty/physiology , Puberty/psychology , Reward , Adolescent , Adolescent Behavior/physiology , Cerebral Cortex/metabolism , Cerebral Cortex/physiology , Child , Corpus Striatum/metabolism , Corpus Striatum/physiology , Cues , Dehydroepiandrosterone/analysis , Female , Functional Neuroimaging/methods , Humans , Magnetic Resonance Imaging/methods , Male , Nucleus Accumbens/metabolism , Nucleus Accumbens/physiology , Prefrontal Cortex/metabolism , Prefrontal Cortex/physiology , Sesquiterpenes/analysis , Testosterone/analysis
9.
Dev Cogn Neurosci ; 28: 1-11, 2017 12.
Article En | MEDLINE | ID: mdl-29028595

Concerns about social status are ubiquitous during adolescence, with information about social status often conveyed in text formats. Depressed adolescents may show alterations in the functioning of neural systems supporting processing of social status information. We examined whether depressed youth exhibited altered neural activation to social status words in temporal and prefrontal cortical regions thought to be involved in social cognitive processing, and whether this response was associated with development. Forty-nine adolescents (ages 10-18; 35 female), including 20 with major depressive disorder and 29 controls, were scanned while identifying the valence of words that connoted positive and negative social status. Results indicated that depressed youth showed reduced late activation to social status (vs neutral) words in the superior temporal cortex (STC) and medial prefrontal cortex (MPFC); whereas healthy youth did not show any significant differences between word types. Depressed youth also showed reduced late activation in the dorsolateral prefrontal cortex and fusiform gyrus to negative (vs positive) social status words; whereas healthy youth showed the opposite pattern. Finally, age was positively associated with MPFC activation to social status words. Findings suggest that hypoactivation in the "social cognitive brain network" might be implicated in altered interpersonal functioning in adolescent depression.


Brain/pathology , Depressive Disorder, Major/psychology , Neurons/metabolism , Adolescent , Child , Female , Humans , Male
10.
Soc Cogn Affect Neurosci ; 12(7): 1138-1148, 2017 07 01.
Article En | MEDLINE | ID: mdl-28402574

The cognitive regulation of emotion is impaired in major depressive disorder and has been linked to an imbalance of pre-frontal-subcortical brain activity. Despite suggestions that this relationship represents a neurodevelopmental marker of depression, few studies have examined the neural correlates of emotion regulation in depressed youth. We combined a 'cognitive reappraisal' paradigm with functional magnetic resonance imaging to study the neural correlates of emotional regulation in a large sample of non-medicated depressed adolescents and young adults (n = 53) and healthy controls (n = 64). As compared with healthy controls, young people with depression were less able to reduce negative affect during reappraisal, which corresponded to blunted modulation of amygdala activity. While in healthy individuals amygdala activation was modulated by age, no such relationship was observed in depressed individuals. Heightened activation of the ventromedial pre-frontal cortex (vmPFC) and reduced activation of the dorsal midline cortex was also found for the depressed group. Overall, these findings suggest that brain systems that support cognitive reappraisal are functionally altered in youth depression. We argue that excessive engagement of the vmPFC in particular, may be central to understanding how the process of putting a 'positive spin' on negative emotional material may be altered in depressed youth.


Brain/diagnostic imaging , Depressive Disorder, Major/diagnostic imaging , Emotions/physiology , Adolescent , Adult , Brain/physiopathology , Brain Mapping , Case-Control Studies , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/psychology , Female , Humans , Magnetic Resonance Imaging , Male , Young Adult
11.
Neuroimage ; 148: 219-229, 2017 03 01.
Article En | MEDLINE | ID: mdl-28089676

The amygdala is one of the most extensively studied human brain regions and undisputedly plays a central role in many psychiatric disorders. However, an outstanding question is whether connectivity of amygdala subregions, specifically the centromedial (CM), laterobasal (LB) and superficial (SF) nuclei, are modulated by brain state (i.e., task vs. rest). Here, using a multimodal approach, we directly compared meta-analytic connectivity modeling (MACM) and specific co-activation likelihood estimation (SCALE)-derived estimates of CM, LB and SF task-based co-activation to the functional connectivity of these nuclei as assessed by resting state fmri (rs-fmri). Finally, using a preexisting resting state functional connectivity-derived cortical parcellation, we examined both MACM and rs-fmri amygdala subregion connectivity with 17 large-scale networks, to explicitly address how the amygdala interacts with other large-scale neural networks. Analyses revealed strong differentiation of CM, LB and SF connectivity patterns with other brain regions, both in task-dependent and task-independent contexts. All three regions, however, showed convergent connectivity with the right ventrolateral prefrontal cortex (VLPFC) that was not driven by high base rate levels of activation. Similar patterns of connectivity across rs-fmri and MACM were observed for each subregion, suggesting a similar network architecture of amygdala connectivity with the rest of the brain across tasks and resting state for each subregion, that may be modified in the context of specific task demands. These findings support animal models that posit a parallel model of amygdala functioning, but importantly, also modify this position to suggest integrative processing in the amygdala.


Amygdala/diagnostic imaging , Amygdala/physiology , Neural Pathways/diagnostic imaging , Neural Pathways/physiology , Adult , Brain Mapping , Cerebral Cortex/diagnostic imaging , Female , Humans , Likelihood Functions , Magnetic Resonance Imaging , Male , Models, Neurological , Multimodal Imaging , Nerve Net/diagnostic imaging , Nerve Net/physiology , Neuroimaging , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiology , Rest
12.
J Affect Disord ; 192: 143-52, 2016 Mar 01.
Article En | MEDLINE | ID: mdl-26724693

BACKGROUND: There is accumulating evidence of alterations in neural circuitry underlying the processing of social-affective information in adolescent Major Depressive Disorder (MDD). However the extent to which such alterations are present in youth at risk for mood disorders remains unclear. METHOD: Whole-brain blood oxygenation level-dependent task responses and functional connectivity using generalized psychophysiological interaction (gPPI) analyses to mild and intense happy face stimuli was examined in 29 adolescents with MDD (MDD; M age, 16.0, S.D. 1.2 years), 38 healthy adolescents at risk of a mood disorder, by virtue of having a parent diagnosed with either Bipolar Disorder (BD) or MDD (Mood-risk; M age 13.4, S.D. 2.5 years) and 43 healthy control adolescents, having parents with no psychiatric disorder (HC; M age 14.6, S.D. 2.2 years). RESULTS: Relative to HC adolescents, Mood-risk adolescents showed elevated right dorsolateral prefrontal cortex (DLPFC) activation to 100% intensity happy (vs. neutral) faces and concomitant lowered ventral putamen activity to 50% intensity happy (vs. neutral) faces. gPPI analyses revealed that MDD adolescents showed significantly lower right DLPFC functional connectivity with the ventrolateral PFC (VLPFC) compared to HC to all happy faces. LIMITATIONS: The current study is limited by the smaller number of healthy offspring at risk for MDD compared to BD. CONCLUSIONS: Because Mood-risk adolescents were healthy at the time of the scan, elevated DLPFC and lowered ventral striatal activity in Mood-risk adolescents may be associated with risk or resiliency. In contrast, altered DLPFC-VLPFC functional connectivity in MDD adolescents may be associated with depressed mood state. Such alterations may affect social-affective development and progression to a mood disorder in Mood-risk adolescents. Future longitudinal follow-up studies are needed to directly answer this research question.


Depressive Disorder, Major/physiopathology , Emotions/physiology , Facial Expression , Facial Recognition/physiology , Happiness , Adolescent , Affect/physiology , Brain/blood supply , Brain/physiopathology , Case-Control Studies , Corpus Striatum/physiopathology , Cues , Depressive Disorder, Major/psychology , Female , Humans , Male , Prefrontal Cortex/blood supply , Prefrontal Cortex/physiopathology , Putamen/physiopathology , Reinforcement, Social , Risk Factors
13.
Hum Brain Mapp ; 37(1): 7-19, 2016 Jan.
Article En | MEDLINE | ID: mdl-26596970

Few studies have examined the neural correlates of emotion regulation across adolescence and young adulthood. Existing studies of cognitive reappraisal indicate that improvements in regulatory efficiency may develop linearly across this period, in accordance with maturation of prefrontal cortical systems. However, there is also evidence for adolescent differences in reappraisal specific to the activation of "social-information processing network" regions, including the amygdala and temporal-occipital cortices. Here, we use fMRI to examine the neural correlates of emotional reactivity and reappraisal in response to aversive social imagery in a group of 78 adolescents and young adults aged 15-25 years. Within the group, younger participants exhibited greater activation of temporal-occipital brain regions during reappraisal in combination with weaker suppression of amygdala reactivity-the latter being a general correlate of successful reappraisal. Further analyses demonstrated that these age-related influences on amygdala reactivity were specifically mediated by activation of the fusiform face area. Overall, these findings suggest that enhanced processing of salient social cues (i.e., faces) increases reactivity of the amygdala during reappraisal and that this relationship is stronger in younger adolescents. How these relationships contribute to well-known vulnerabilities of emotion regulation during this developmental period will be an important topic for ongoing research.


Brain/physiology , Emotions/physiology , Adolescent , Adult , Brain/blood supply , Brain Mapping , Cognition/physiology , Female , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Male , Neuropsychological Tests , Oxygen/blood , Photic Stimulation , Statistics as Topic , Young Adult
14.
Front Psychol ; 6: 229, 2015.
Article En | MEDLINE | ID: mdl-25814963

The Iowa Gambling Task (IGT) and the Soochow Gambling Task (SGT) are two experience-based risky decision-making tasks for examining decision-making deficits in clinical populations. Several cognitive models, including the expectancy-valence learning (EVL) model and the prospect valence learning (PVL) model, have been developed to disentangle the motivational, cognitive, and response processes underlying the explicit choices in these tasks. The purpose of the current study was to develop an improved model that can fit empirical data better than the EVL and PVL models and, in addition, produce more consistent parameter estimates across the IGT and SGT. Twenty-six opiate users (mean age 34.23; SD 8.79) and 27 control participants (mean age 35; SD 10.44) completed both tasks. Eighteen cognitive models varying in evaluation, updating, and choice rules were fit to individual data and their performances were compared to that of a statistical baseline model to find a best fitting model. The results showed that the model combining the prospect utility function treating gains and losses separately, the decay-reinforcement updating rule, and the trial-independent choice rule performed the best in both tasks. Furthermore, the winning model produced more consistent individual parameter estimates across the two tasks than any of the other models.

15.
Soc Cogn Affect Neurosci ; 10(9): 1282-90, 2015 Sep.
Article En | MEDLINE | ID: mdl-25678548

Early timing of adrenarche, associated with relatively high levels of Dehydroepiandrosterone (DHEA) in children, has been associated with mental health and behavioral problems. However, little is known about effects of adreneracheal timing on brain function. The aim of this study was to investigate the effects of early adrenarche (defined by high DHEA levels independent of age) on affective brain function and symptoms of psychopathology in late childhood (N = 83, 43 females, M age 9.53 years, s.d. 0.34 years). Results showed that higher DHEA levels were associated with decreased affect-related brain activity (i) in the mid-cingulate cortex in the whole sample, and (ii) in a number of cortical and subcortical regions in female but not male children. Higher DHEA levels were also associated with increased externalizing symptoms in females, an association that was partly mediated by posterior insula activation to happy facial expressions. These results suggest that timing of adrenarche is an important moderator of affect-related brain function, and that this may be one mechanism linking early adrenarche to psychopathology.


Adrenarche/physiology , Affect/physiology , Cerebral Cortex/physiology , Dehydroepiandrosterone/blood , Mental Disorders/physiopathology , Mental Health , Child , Female , Humans , Male , Mental Disorders/blood , Mental Disorders/psychology
16.
Neuroimage Clin ; 7: 266-72, 2015.
Article En | MEDLINE | ID: mdl-25610789

BACKGROUND: Altered basal ganglia function has been implicated in the pathophysiology of youth Major Depressive Disorder (MDD). Studies have generally focused on characterizing abnormalities in ventral "affective" corticostriatal loops supporting emotional processes. Recent evidence however, has implicated alterations in functional connectivity of dorsal "cognitive" corticostriatal loops in youth MDD. The contribution of dorsal versus ventral corticostriatal alterations to the pathophysiology of youth MDD remains unclear. METHODS: Twenty-one medication-free patients with moderate-to-severe MDD between the ages of 15 and 24 years old were matched with 21 healthy control participants. Using resting-state functional connectivity magnetic resonance imaging we systematically investigated connectivity of eight dorsal and ventral subdivisions of the striatum. Voxelwise statistical maps of each subregion's connectivity with other brain areas were compared between the depressed and control groups. RESULTS: Depressed youths showed alterations in functional connectivity that were confined to the dorsal corticostriatal circuit. Compared to controls, depressed patients showed increased connectivity between the dorsal caudate nucleus and ventrolateral prefrontal cortex bilaterally. Increased depression severity correlated with the magnitude of dorsal caudate connectivity with the right dorsolateral prefrontal cortex. There were no significant between-group differences in connectivity of ventral striatal regions. CONCLUSIONS: The results provide evidence that alterations in corticostriatal connectivity are evident at the early stages of the illness and are not a result of antidepressant treatment. Increased connectivity between the dorsal caudate, which is usually associated with cognitive processes, and the more affectively related ventrolateral prefrontal cortex may reflect a compensatory mechanism for dysfunctional cognitive-emotional processing in youth depression.


Corpus Striatum/physiopathology , Depressive Disorder, Major/physiopathology , Neural Pathways/physiopathology , Adolescent , Female , Humans , Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging , Male , Young Adult
17.
BJPsych Open ; 1(2): 139-148, 2015 Oct.
Article En | MEDLINE | ID: mdl-27703739

BACKGROUND: Recent evidence suggests that exercise plays a role in cognition and that the posterior cingulate cortex (PCC) can be divided into dorsal and ventral subregions based on distinct connectivity patterns. AIMS: To examine the effect of physical activity and division of the PCC on brain functional connectivity measures in subjective memory complainers (SMC) carrying the epsilon 4 allele of apolipoprotein E (APOE ε4) allele. METHOD: Participants were 22 SMC carrying the APOE ε4 allele (ε4+; mean age 72.18 years) and 58 SMC non-carriers (ε4-; mean age 72.79 years). Connectivity of four dorsal and ventral seeds was examined. Relationships between PCC connectivity and physical activity measures were explored. RESULTS: ε4+ individuals showed increased connectivity between the dorsal PCC and dorsolateral prefrontal cortex, and the ventral PCC and supplementary motor area (SMA). Greater levels of physical activity correlated with the magnitude of ventral PCC-SMA connectivity. CONCLUSIONS: The results provide the first evidence that ε4+ individuals at increased risk of cognitive decline show distinct alterations in dorsal and ventral PCC functional connectivity. DECLARATION OF INTEREST: D.A. has served on scientific advisory boards for Novartis, Eli Lilly, Janssen, Prana and Pfizer, and as Editor-in-Chief for International Psychogeriatrics; received speaker honoraria from Pfizer and Lundbeck, and research support from Eli Lilly, GlaxoSmithKline, Forest Laboratories, Novartis, and CSIRO. C.L.M. has received consulting fees from Eli Lilly and Prana Biotechnology, and has stock ownership in Prana Biotechnology. C.C.R. has received consultancy payments from Roche and Piramal, and research support from Avid Radiopharmaceuticals, Eli Lilly, GE Healthcare, Piramal and Navidea for amyloid imaging. C.S. has provided clinical consultancy and been on scientific advisory committees for the Australian CSIRO, Alzheimer's Australia, University of Melbourne and other relationships, which are subject to confidentiality clauses; she has been a named Chief Investigator on investigator-driven collaborative research projects in partnership with Pfizer, Merck, Piramal, Bayer and GE Healthcare. Her research programme has received support from the National Health and Medical Research Council Alzheimer's Association, Collier Trust, Scobie and Claire McKinnon Foundation, JO and JR Wicking Trust, Shepherd Foundation, Brain Foundation, Mason Foundation, Ramaciotti Foundation, Alzheimer's Australia and the Royal Australian College of Physicians. COPYRIGHT AND USAGE: © The Royal College of Psychiatrists 2015. This is an open access article distributed under the terms of the Creative Commons Non-Commercial, No Derivatives (CC BY-NC-ND) licence.

18.
Neuroimage Clin ; 4: 209-31, 2014.
Article En | MEDLINE | ID: mdl-24455472

BACKGROUND: There is growing interest in understanding the neurobiology of major depressive disorder (MDD) in youth, particularly in the context of neuroimaging studies. This systematic review provides a timely comprehensive account of the available functional magnetic resonance imaging (fMRI) literature in youth MDD. METHODS: A literature search was conducted using PubMED, PsycINFO and Science Direct databases, to identify fMRI studies in younger and older youth with MDD, spanning 13-18 and 19-25 years of age, respectively. RESULTS: Twenty-eight studies focusing on 5 functional imaging domains were identified, namely emotion processing, cognitive control, affective cognition, reward processing and resting-state functional connectivity. Elevated activity in "extended medial network" regions including the anterior cingulate, ventromedial and orbitofrontal cortices, as well as the amygdala was most consistently implicated across these five domains. For the most part, findings in younger adolescents did not differ from those in older youth; however a general comparison of findings in both groups compared to adults indicated differences in the domains of cognitive control and affective cognition. CONCLUSIONS: Youth MDD is characterized by abnormal activations in ventromedial frontal regions, the anterior cingulate and amygdala, which are broadly consistent with the implicated role of medial network regions in the pathophysiology of depression. Future longitudinal studies examining the effects of neurodevelopmental changes and pubertal maturation on brain systems implicated in youth MDD will provide a more comprehensive neurobiological model of youth depression.


Brain/blood supply , Brain/pathology , Depressive Disorder, Major/pathology , Adolescent , Adult , Databases, Bibliographic/statistics & numerical data , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Oxygen/blood , Young Adult
19.
Am J Psychiatry ; 169(8): 851-9, 2012 Aug.
Article En | MEDLINE | ID: mdl-22772158

BACKGROUND: Modulation of nicotinic acetylcholine receptors (nAChRs), specifically those containing the ß2 subunit, may be effective in treating patients with major depressive disorder. Using [123I]5-I-A-85380 single photon emission computed tomography (SPECT), the authors studied the availability of ß2-subunit-containing nAChRs (ß2*-nAChRs) in depressed patients. To understand its molecular basis, the authors also studied ß2*-nAChR binding in postmortem brain samples from depressed subjects. METHOD: The participants were 23 medication-free, nonsmoking subjects with familial, early-onset depression (eight acutely ill and 15 recovered) and 23 age- and gender-matched nonsmoking comparison subjects. Each received one [123I]5-I-A-85380 SPECT scan and an MRI scan. The availability of ß2*-nAChRs was quantified as VT/fP. Postmortem analysis of ß2*-nAChR binding was conducted with [123I]5-I-A-85380 on prefrontal cortex samples from 14 depressed subjects and 14 age-matched comparison subjects. RESULTS: The ß2*-nAChR availability in both the acutely ill and recovered depressed subjects was significantly lower across all brain regions than in the respective comparison subjects, and it was lower in the acutely ill subjects than in those who were recovered. In the depressed patients, ß2*-nAChR availability was significantly correlated with lifetime number of depressive episodes, trauma score, and anxiety score. There were no differences in ß2*-nAChR number between groups in the postmortem study. CONCLUSIONS: Depressed patients have lower ß2*-nAChR availability than do healthy subjects. The difference between ß2*-nAChR availability in vivo and in post-mortem samples may be analogous to data with dopaminergic PET ligands and dopamine receptor availability; lower receptor availability for the SPECT ligand could be caused by greater endogenous acetylcholine.


Depressive Disorder, Major/physiopathology , Receptors, Nicotinic/physiology , Adult , Brain/metabolism , Brain/pathology , Brain/physiopathology , Case-Control Studies , Depressive Disorder, Major/metabolism , Depressive Disorder, Major/pathology , Female , Humans , Magnetic Resonance Imaging , Male , Neuroimaging , Psychiatric Status Rating Scales , Receptors, Nicotinic/metabolism , Tomography, Emission-Computed, Single-Photon
20.
Psychiatry Res ; 202(1): 30-7, 2012 Apr 30.
Article En | MEDLINE | ID: mdl-22595508

Abnormalities in the response of the orbitofrontal cortex (OFC) and dorsolateral prefrontal cortex (DLPFC) to negative emotional stimuli have been reported in acutely depressed patients. However, there is a paucity of studies conducted in unmedicated individuals with major depressive disorder in remission (rMDD) to assess whether these are trait abnormalities. To address this issue, 19 medication-free rMDD individuals and 20 healthy comparison (HC) participants were scanned using functional magnetic resonance imaging while performing an implicit emotion processing task in which they labeled the gender of faces depicting negative (fearful), positive (happy) and neutral facial expressions. The rMDD and HC groups were compared using a region-of-interest approach for two contrasts: fear vs. neutral and happy vs. neutral. Relative to HC, rMDD showed reduced activation in left OFC and DLPFC to fearful (vs. neutral) faces. Right DLPFC activation to fearful (vs. neutral) faces in the rMDD group showed a significant positive correlation with duration of euthymia. The findings support deficits in left OFC and DLPFC responses to negative emotional stimuli during euthymic periods of MDD, which may reflect trait markers of the illness or a 'scar' due to previous depression. Recovery may also be associated with compensatory increases in right DLPFC functioning.


Depressive Disorder, Major/physiopathology , Emotions/physiology , Prefrontal Cortex/physiopathology , Adult , Brain Mapping , Facial Expression , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Nerve Net/physiopathology
...